GLUT4 overexpression in db/db mice dose-dependently ameliorates diabetes but is not a lifelong cure.

نویسندگان

  • J T Brozinick
  • S C McCoid
  • T H Reynolds
  • N A Nardone
  • D M Hargrove
  • R W Stevenson
  • S W Cushman
  • E M Gibbs
چکیده

We previously reported that overexpression of GLUT4 in lean, nondiabetic C57BL/KsJ-lepr(db/+) (db/+) mice resulted in improved glucose tolerance associated with increased basal and insulin-stimulated glucose transport in isolated skeletal muscle. We used the diabetic (db/db) litter mates of these mice to examine the effects of GLUT4 overexpression on in vivo glucose utilization and on in vitro glucose transport and GLUT4 translocation in diabetic mice. We examined in vivo glucose disposal by oral glucose challenge and hyperinsulinemic-hyperglycemic clamps. We also evaluated the in vitro relationship between glucose transport activity and cell surface GLUT4 levels as assessed by photolabeling with the membrane-impermeant reagent 2-N-(4-(1-azi-2,2,2-trifluoroethyl)benzoyl)-1,3-bis(D-mannose-4-yloxy)-2-propylamine in extensor digitorum longus (EDL) muscles. All parameters were examined as functions of animal age and the level of GLUT4 overexpression. In young mice (age 10-12 weeks), both lower (two- to threefold) and higher (four- to fivefold) levels of GLUT4 overexpression were associated with improved glucose tolerance compared to age-matched nontransgenic (NTG) mice. However, glucose tolerance deteriorated with age in db/db mice, although less rapidly in transgenic mice expressing the higher level of GLUT4. Glucose infusion rates during hyperinsulinemic-hyperglycemic clamps were increased with GLUT4 overexpression, compared with NTG mice in both lower and higher levels of GLUT4 overexpression, even in the older mice. Surprisingly, isolated EDL muscles from diabetic db/db mice did not exhibit alterations in either basal or insulin-stimulated glucose transport activity or cell surface GLUT4 compared to nondiabetic db/+ mice. Furthermore, both GLUT4 overexpression levels and animal age are associated with increased basal and insulin-stimulated glucose transport activities and cell surface GLUT4. However, the observed increased glucose transport activity in older db/db mice was not accompanied by an equivalent increase in cell surface GLUT4 compared to younger animals. Thus, although in vivo glucose tolerance is improved with GLUT4 overexpression in young animals, it deteriorates with age; in contrast, insulin responsiveness as assessed by the clamp technique remains improved with GLUT4 overexpression, as does in vitro insulin action. In summary, despite an impairment in whole-body glucose tolerance, skeletal muscle of the old transgenic GLUT4 db/db mice is still insulin responsive in vitro and in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycemic Improvement in Diabetic dbldb Mice by Overexpression of the Human Insulin - regulatable Glucose Transporter ( GLUT 4 )

Introduction The effects of increased GLUT4 (insulin-regulatable muscle/fat glucose transporter) expression on glucose homeostasis in a genetic model of non-insulin-dependent diabetes mellitus were determined by expressing a human GLUT4 transgene (hGLUT4) in diabetic C57BL/KsJ-db/db mice. A genomic hGLUT4 construct was microinjected directly into pronuclear murine embryos of dbl+ matings to mai...

متن کامل

Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4).

The effects of increased GLUT4 (insulin-regulatable muscle/fat glucose transporter) expression on glucose homeostasis in a genetic model of non-insulin-dependent diabetes mellitus were determined by expressing a human GLUT4 transgene (hGLUT4) in diabetic C57BL/KsJ-db/db mice. A genomic hGLUT4 construct was microinjected directly into pronuclear murine embryos of db/+ matings to maintain the inb...

متن کامل

Soluble Flt-1 gene therapy ameliorates albuminuria but accelerates tubulointerstitial injury in diabetic mice.

VEGF is recognized as a major mediator in the development of diabetic nephropathy. Soluble Flt-1 (sFlt-1) is the endogenous inhibitor of VEGF, and recently genetic overexpression of sFlt-1 in the podocyte was shown to be protective in murine diabetic nephropathy. In this study, we performed a translational study to determine whether an intramuscular gene transfer of sFlt-1 can prevent the progr...

متن کامل

SMP-534 ameliorates progression of glomerular fibrosis and urinary albumin in diabetic db/db mice.

Diabetic nephropathy is currently the most common cause of end-stage renal disease. Diabetic nephropathy patients, whether insulin dependent or not, develop fibrotic changes in glomeruli that manifest as overt nephropathy. Previously, we demonstrated that 5-chloro-2-{(1E)-3-[2-(4-methoxybenzoyl)-4-methyl-1H-pyrrol-1-yl]prop-1-en-1-yl}-N-(methylsulfonyl)benzamide (SMP-534) reduces extracellular ...

متن کامل

The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice.

NN2211 is a long-acting, metabolically stable glucagon-like peptide-1 (GLP-1) derivative designed for once daily administration in humans. NN2211 dose dependently reduced the glycemic levels in ob/ob mice, with antihyperglycemic activity still evident 24 h postdose. Apart from an initial reduction in food intake, there were no significant differences between NN2211 and vehicle treatment, and bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2001